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Abstract
The crystal structure of a series of six high quality single crystal Laves phase
superlattice samples, of structure [t1 Å DyFe2/t2 Å YFe2]N , grown by molecular
beam epitaxy have been probed using a high resolution triple crystal x-ray
diffractometer. A study of the scattering near the 22 0, 4 4 0 and 2 6 2̄ reflections
has revealed the presence of several superlattice peaks,showing that the samples
exhibit a high degree of superlattice modulation. The typical mosaic spread is
less than 0.9◦, while the superlattice coherence lengths are typically 2000 Å.
Fitting of a model to the data using a differential evolution algorithm with a
Rietveld refinement has confirmed the high quality of these samples and shows
that the interface widths are typically ∼20 Å. Measurements of the in-plane and
out-of-plane lattice parameters show that the samples are subjected to a shear
that is slightly anisotropic in the plane. Transverse scans through the Bragg
and superlattice peaks show that the width is mainly dominated by a mosaic
crystal effect, with a small contribution arising from the correlated roughness
at the bilayer interfaces. Finally, high resolution electron microscopy images
show directly that these superlattices exhibit a high degree of modulation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

There is considerable interest in the magnetic properties of Laves phase superlattices. This
stems partly from a practical point of view and partly from a fundamental point of view. Firstly,
these structures present, theoretically at least, the possibility of developing hard magnets whose
performance parameter, the magnetic energy product (B H )MAX, is as large as 1 MJ m−3,
provided that the exchange spring mechanism can be suppressed [1]. This is important
because, at present, the energy product available with modern magnets is sufficiently close
to the theoretical limits that a new method will be required if higher performance magnets are
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to be made. Secondly, the research on Laves phase thin layers and superlattices is a natural
extension of the 1970s research on the bulk Laves phases [2] and of the more recent studies
on rare earth superlattices [3–6].

The recent interest in the magnetic behaviour of Laves phase superlattices has shown using
magnetization measurements the existence of a variety of magnetic properties and structures in
these systems. These superlattices are composite systems of hard and soft magnetic materials,
where the magnetization of the hard material is usually tied to an easy direction, whereas the
magnetization of the soft magnetic material can in some cases be turned by the application of
an external magnetic field.

In the DyFe2–YFe2 superlattices, the DyFe2 layers consist of dysprosium and iron
moments coupled antiparallel, forming a ferrimagnet through the effective exchange
interaction. The YFe2 layers are also ferrimagnetic, but the yttrium site only has a small
induced moment [7], while the iron moments tend to align parallel to one another as a
result of the strong Fe–Fe exchange interaction. Finally, there is a weak coupling of the
dysprosium moments giving long range parallel alignment of the dysprosium moments. When
these materials are combined into superlattices there are clearly a wide variety of magnetic
configurations possible, a result of the above magnetic interactions, the artificial periodicity of
the superlattice, the epitaxially induced magnetic anisotropy and the interaction of the structure
with any applied magnetic field.

Recent studies have shown the existence of the so-called spring magnet behaviour [8, 9].
This behaviour arises when the magnetization of the DyFe2 layers dominates the structure, with
the result that the easy direction of magnetization is largely determined by these layers. The iron
moments in the YFe2 layers couple parallel to those in the DyFe2 layers through the strong ex-
change interaction. If a magnetic field is applied above a critical bending field, the iron moments
in the YFe2 layers tend to rotate parallel to the field direction to reduce their Zeeman energy.

Another interesting magnetic structure that arises is when the magnetization of the YFe2

layers dominates the magnetic structure. In this case, when a magnetic field is applied it can
be favourable for the iron moments in the YFe2 layers to all align parallel to the field while the
net moment in the DyFe2 layers is antiparallel to the applied field direction. This behaviour
has been shown to be the source of negative coercivity in some samples [10–14].

Finally these structures have been shown to exhibit giant magnetoresistance properties. A
change in resistance, �R/R, of 32% has been demonstrated in an applied field of 23 T [15].

The explanation of these effects relies heavily on the superlattice structure exhibiting
a high degree of modulation between the hard and soft magnetic layers. Therefore in this
study we have investigated the structure of six superlattice samples using x-ray diffraction
and high resolution electron microscopy (HREM) techniques. By simulating the x-ray
scattering longitudinal lineshape, we are able perform a simultaneous non-linear least squares
fit of a model to the scattering around three Bragg reflections using a differential evolution
algorithm (DEA) and thereby deduce the average lattice parameters, the number of layers in the
YFe2 and DyFe2 blocks of the superlattice and the concentration profile and interface widths
of the bilayer. Resolution corrected measurements of the width of the main Bragg reflection
in the growth direction allow an estimate of the superlattice coherence length, ξ , to be made.
The transverse lineshape through the main Bragg peak and superlattice peaks have also been
measured and, from this, the structure of the planes parallel to the growth direction is deduced.

2. Sample growth

Bulk DyFe2 and YFe2 crystallize in a face centred cubic diamond structure with eight RFe2

units per cubic unit cell. The structure is made up of a tetrahedron of iron atoms surrounded
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Figure 1. The cubic unit cell of the C15 Laves phases DyFe2 and YFe2. The large spheres represent
dysprosium or yttrium atoms and the small spheres represent iron atoms. They crystallize in the
face centred cubic structure O7

h (Fd3̄m) with 24 atoms per cubic unit cell.

by the rare earth atoms and is schematically illustrated in figure 1. These compounds have
bulk lattice parameters of 7.325 and 7.363 Å respectively [2]. The samples were grown using
a molecular beam epitaxy (MBE) facility. Sapphire substrates with a (1 1 2̄ 0) orientation were
used and 1000 Å of (1 1 0) niobium was deposited as a chemical buffer layer, followed by
a 20 Å thick iron ‘seed’ to improve crystal growth [16]. The iron seed layer is thought to
improve the epitaxial growth because of an interaction that occurs between the iron atoms with
the niobium interface, that creates a surface intermetallic phase. RHEED patterns observed
during this stage of growth show that the alloy is deposited as a two dimensional rectangular
lattice in agreement with [16] and referred to as NbFe-ϕ. The superlattice was then grown
by co-deposition of the elementary fluxes and grows with [1 1 0] as the growth direction. Six
superlattice samples of structure [t1 Å DyFe2/t2 Å YFe2]N were grown and the growth process
was monitored in situ using RHEED diffraction.

The best samples were found to grow with an initial growth temperature of 600 ◦C for
the superlattice, which was subsequently reduced to 450 ◦C over the course of the first few
bilayer repeats. The epitaxial relationships are [1 1 2̄ 0] sapphire ‖ [1 1 0] Laves, [0 0 0 1]
sapphire ‖ [1 1̄ 1] Laves and [1̄ 1 0 0] sapphire ‖ [1̄ 1 2] Laves. The schematic structure of the
samples is shown in figure 2.

The sample thickness was estimated by calibrating the fluxes immediately before the
sample growth using a quartz crystal monitor located exactly at the substrate position. Control
systems maintained stable fluxes throughout the growth, allowing the thickness of the layer to
be determined from the growth time. This estimate of the layer thickness is referred to as the
nominal thickness. The nominal sample structures are given in table 1, along with some of
their structural properties.

3. Experimental analysis

3.1. X-ray scattering

The structure of the superlattices has been investigated using a triple crystal Philips MRD high
resolution x-ray diffractometer with an incident wavelength of 1.540 56 Å from a copper target.
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Figure 2. A schematic view of a Laves phase superlattice of structure [t1 Å DyFe2/t2 Å YFe2]N

grown by MBE.

Table 1. Some structural parameters of the DyFe2/YFe2 superlattices as determined by x-ray
diffraction at room temperature. The parameters given in the table were obtained by fitting the
data to a Pearson VII function using a conventional Levenberg–Marquardt fitting routine. ξ is the
superlattice coherence length and ϒ is the rocking curve FWHM. Sample 1002 is a 10 000 Å thick
layer of DyFe2.

Sample Nominal structure ϒ (deg) ξ (Å)

932 [100/100]40 0.755(0.002) 2300(200)
933 [150/150]40 0.92(0.01) 3600(300)
955 [250/150]30 0.82(0.01) 1200(100)
989 [70/30]60 0.987(0.001) 1800(200)
990 [50/70]60 0.874(0.002) 1700(200)

1003 [150/100]50 0.850(0.002) 2300(200)
1002 10 000 Å DyFe2 0.812(0.001) —

A four bounce germanium (22 0) monochromator,with a 0.5◦ diverging slit, and a 0.3×4.0 mm
crossed slit assembly gave a primary beam divergence of better than 12 arcsec. Most of the
experiments were performed in a two crystal configuration,with a secondary slit size of 0.5 mm.
The resolution function was estimated by measuring 1 1 2̄ 0, 2 2 4̄ 0 and 2 2 4̄ 6̄ sapphire peaks
close to the 2 2 0, 4 4 0 and 2 6̄ 2 superlattice reflections. This enabled the resolution function
to be estimated at each of these three peaks as (�qx,�qz) = (6, 8) × 10−4, (6, 8) × 10−4

and (20, 8) × 10−4 Å−1 respectively. Selected measurements around the 2 2 0 superlattice
reflection were also performed in a three crystal configuration and the resolution was again
estimated from the measurement of the 1 1 2̄ 0 sapphire reflection as �q = 5.0 × 10−4 Å−1 in
the scattering plane.

All the data were taken at room temperature. The scattering vector, Q, was varied parallel
and perpendicular to the layer surface, through the centre of the Bragg or satellite peak. These
scans were defined by two components, qz ‖ [1 1 0] and qx ‖ [1 1̄ 1]. Scans in which qx

were varied are referred to as transverse scans while those in which qz varied are referred
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Figure 3. A schematic diagram showing the region of reciprocal space probed in the x-ray scattering
experiments.

to as longitudinal scans. The Bragg reflections are given in the usual Miller index notation
h k l, where each of the indices is related to the q components and the lattice parameters as
qz = (2π/a)

√
h2 + k2, with h = k, and qx = (2π/a)

√
h2 + k2 + l2, with h = k̄ = l. The

scattering was measured around 2 2 0, 4 4 0, 2 6 2̄, figure 3, and in addition for some samples
the 6 6 0 and 1 7 3̄ reflections were also measured.

4. Theory of scattering from superlattices

Superlattices may exhibit a wide variety of defects that can modify the superlattice structure
from the ideal; figure 2. The nature of the defects is dependent upon many factors including
the substrate, growth temperature and constituent elements. Usually, in situ analysis such
as RHEED diffraction can be used as an initial guide to the superlattice quality, but more
precise techniques such as x-ray diffraction analysis or HREM are needed to quantitatively
determine it.

Defects in superlattices may be broadly be divided into two categories. Firstly, there
may be variations of the structural parameters in the growth direction. This can arise because
of fluctuations in the interlayer spacing or number of planes, or interdiffusion between the
individual blocks of a bilayer. The second type of defect arises if the planes perpendicular to
the growth direction are imperfect. This can be due to interfacial roughness that distorts the
flat interfaces which furthermore can be (a) correlated, (b) cumulative and (c) uncorrelated
roughness. Correlated roughness arises when most bumps or troughs in an interface are
reproduced in the next, with the result that the imperfect interface is propagated throughout
the entire superlattice. Cumulative roughness arises when there are excess atoms in one region
and each time a new layer is deposited the excess increases, with the result that any bump in
the superlattice is amplified as the superlattice structure is built up [17, 18]. These types of
roughness are schematically illustrated in figure 4.

HREM and x-ray scattering measurements presented here show that the roughness of the
Laves phase superlattices is mainly correlated. For the x-ray scattering measurements, this
type of roughness is also evidenced by the fact that the widths of the transverse scans through
main Bragg reflection and satellites are approximately constant. This observation means that
any model of the longitudinal profile can be greatly simplified, effectively to a one dimensional
model.
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Figure 4. A schematic view of (a) correlated and (b) cumulative roughness that may be present in
a superlattice sample.

4.1. Longitudinal profile

In the kinematical approximation, the intensity for elastic charge scattering of x-rays is given
by

I (Q) ∝
∣∣∣∣∑

l

fl(Q)eiQ·Rl

∣∣∣∣
2

, (1)

where Q is the wavevector transfer, Rl is the position of the lth atom and the sum is performed
over all atoms in the sample. fl(Q) is the atomic form factor and is given in the International
Tables for Crystallography [19]. Equation (1) is often applied to superlattices by assuming that
the bilayer repeat distance, �̄, is constant and that the structures of all bilayers are identical.
This implies that �̄ is an integral number of atomic layers. Then averaging over the atomic
layers perpendicular to the growth direction:

I (qz) ∝
∣∣∣∣
(N−1∑

S=0

eiqz�̄S

)(n1+n2−1∑
l=0

fl(qz)eiqz zl

)∣∣∣∣
2

, (2)

where there are N bilayers of width �̄ and n1 and n2 are the number of planes of each
constituent. The first term in this equation give rise to a series of peaks when qz = (2π M)/�̄

with M as an integer. Since however the strongest intensity usually occurs close to the Bragg
reflections of the bulk material it is convenient to write this as

qz = 2πl

d̄
+

2πm

�̄
, (3)

where m = 0,±1,±2, . . . is the order of the satellite. The second term is known as the bilayer
structure factor and is the envelope function that modifies the intensity of the peaks of the first
term. This approach has been the basis for the analysis of many superlattice systems [3, 5, 6].

The difficulty with this approach is that it requires that the bilayer has an integral number of
atomic planes and since during the growth there are no RHEED oscillations it is impossible to
control the growth such that this requirement is satisfied. This is a particularly severe problem
when there are several different planes stacked along the growth direction. For example, the
growth of a FCC structure on (1 1 1) planes requires the regular deposition of planes in an
. . . ABC ABC ABC . . . sequence. The bilayer must then contain exactly 3n planes if each
bilayer is to be identical. The stacking sequence of close-packed planes for growing HCP
structures on the (0 0 1) planes is . . . AB AB AB . . . and the bilayer must then be 2n planes.
The structure of the Laves phases grown on (1 1 0) planes consists of three planes. There are
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planes B containing only iron atoms and planes A and C that both contain equal numbers of
rare earth (dysprosium or yttrium) and iron atoms. The difference between A and C is that the
positions of the atoms differ like those of the AB planes in the FCC structure. The structure of
the Laves phases is then . . . ABCB ABCB ABCB . . . (like the four layered hexagonal structure
of SiC) and so equation (2) is valid only if the bilayer repeat is exactly four atomic planes. Since
four atomic planes in this direction corresponds to approximately 5.2 Å and is comparable with
the interface width, we concluded that it was not appropriate to use equation (2) but employed
equation (1) and explicitly summed over every atomic plane in the superlattice.

The model adopted is then to average over each atomic plane to obtain a one dimensional
model for the superlattice and to apply equation (1) to calculate the scattered intensity.

The simplest model of the interfaces between the YFe2 and DyFe2 blocks is an abrupt
change in both the lattice parameters and concentration profile at the interface. This model is
seldom successful, for several reasons. Firstly, there is a characteristic concentration profile
across the interface, due to diffusion of the atoms at the elevated growth temperature. Secondly,
the lattice mismatch between the two blocks causes a varying strain profile to exist throughout
the superlattice.

To calculate the sum of equation (1) we need to know the l dependence of fl(Q) and Rl .
Following previous work of Jehan et al [6], we use tanh functions to model the concentration
and strain profile of the DyFe2 and YFe2 layers as we move up through the superlattice. The
concentration profile, c1(l), as a function of layer number is given by

c1(l) = 1

2

{
1 +

N−2∑
S=1

tanh

[
(l + 0.5 − �̄S)

λ1

]
−

N−1∑
S=0

tanh

[
(l + 0.5 − n1 − �̄S)

λ1

]}
. (4)

Then the form factor, f (Q), is given by

fl(Q) = c1(l) f1(Q) + [1 − c1(l)] f2(Q). (5)

Similarly, the strain profile is given by

g1(l) = 1

2

{
1 +

N−2∑
S=1

tanh

[
l

λ2

]
−

N−1∑
S=0

tanh

[
(l − n1 − �̄S)

λ2

]}
, (6)

where λ1 determines the interface width in units of layers, λ2 determines the strain profile also
in units of layers and n1 and n2 are the numbers of layers of type DyFe2 and YFe2 respectively.
For (1 1 0) layers in DyFe2 or YFe2 each layer is approximately 1.3 Å apart. Accordingly the
lattice parameter in the growth direction, dl , is given by

dl = g1(l)d1 + [1 − g1(l)]d2, (7)

where d1 and d2 are the mean lattice parameters in [1 1 0] of the DyFe2 and YFe2 blocks.
Small corrections are also made to the simulated profile by including the effects of

absorption of the x-rays by the sample.

4.2. Transverse profile

The transverse scans were performed by varying the scattering vector perpendicular to the
growth direction through the Bragg and superlattice reflections. This allows information
about the deformation of the planes parallel to the growth direction to be extracted. Flat,
undistorted planes give rise to Bragg like delta function scattering. The results of this study
are more complicated because the peaks are broad in qx and there are qualitatively two reasons
for the broadening. Firstly the superlattice structure can be imperfect and this is usually
described by a mosaic spread. In this case all peaks are broadened by the same angular spread.
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The second cause of broadening is interfacial roughness and this gives the satellite peaks an
additional width. For crystals with a small mosaic spread, the interfaces can be characterized
by assuming that the interfaces display roughness, either correlated or random [18, 20]. Then
providing that qx � qz , the intensity of the transverse scans can be written as [20]

I (qx) ∝
∫

J0(qxr)em2 Q2
1 g(r)/2r dr, (8)

where J0(x) is the zeroth order Bessel function, m is the order of the satellite and Q1 = 2π/�̄.
The height–height correlation function, g(r), of the interface is given by g(r) = 〈(h(r) −
h(0))2〉. The functional form of g(r) is often assumed to be of the form

g(r) = σ 2(1 − e−(r/ζ )α ), (9)

where ζ is the in-plane correlation length and α is the roughness parameter. This has the
property that g(r) = σ 2 for large r and g(r) = σ 2(r/ζ )α for small r .

The scattering from such a model has a two component lineshape, with a narrow specular
component and a broader diffuse component. All of the samples in this study exhibited broad
scattering with a single component because of the large mosaic spread or equivalently because
the in-plane coherence length is smaller than the length for a saturation of the roughness. We
therefore make a first order approximation to equation (9) and in this case one can analytically
evaluate equation (8) for two specific cases, α = 1 and 2. In the first case, the transverse
lineshape is Lorentzian and the satellites broaden quadratically with increasing satellite index.
This is the characteristic lineshape for a jagged local surface morphology. When α = 2 the
lineshape is Gaussian and the satellites broaden linearly with the index and the surface is
smooth. In both cases the transverse profiles can be fitted under the assumption that they have
a common shape. We have used a Pearson VII function that corresponds to a Lorentzian curve
when the shape parameter is unity and to a effective Gaussian when the shape is large.

5. Experimental results

5.1. High resolution electron microscopy measurements

The HREM measurements were performed using a JEOL 4000EX operating at 400 keV, with
a point resolution of 0.16 nm. Figure 5 shows a typical image through several bilayers of a
DyFe2–YFe2 superlattice. This image confirms that the superlattices show a high degree of
modulation and it also shows that the interface width is consistent with the interface widths
deduced from the x-ray diffraction analysis. More detailed analysis was not pursued because
of the possibility that defects (including structural damage and H incorporation) could be
introduced during HREM sample preparation of these reactive materials.

5.2. X-ray scattering—structural properties

5.2.1. Longitudinal profile. Initially for sample SL932, two sets of measurements were made
of the scattered intensity observed when the wavevector transfer was varied longitudinally
through the 2 2 0 Bragg reflection. One set used a three crystal configuration and the other
used a two crystal configuration, with a secondary slit size of 0.3 mm. The results of these
measurements are shown in figure 6.

As expected, the agreement between the two sets of measurements is very good. However,
the scattered intensity observed using a three crystal configuration was considerably weaker
than when using the two crystal configuration. For this reason, all of the subsequent
measurements were made using the latter configuration. However, figure 6 shows that the
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Figure 5. A HREM image of a section through a Laves phase superlattice of DyFe2/YFe2. The
nominal bilayer repeat distance is 100 Å in the [1 1 0] growth direction and the zone axis is [1 1̄ 1],
perpendicular to the growth direction. The image is taken along an in-plane 〈1 1 1〉 direction.

width of the main Bragg reflection is considerably narrower for the three crystal configuration
than when using the two crystal configuration. This is because the resolution function in the
qz direction is larger for the two crystal configuration. Therefore to accurately measure the
coherence length, ξ , the observed peak width, �qz , needs to be corrected using

�q2
z = (�qcorr

z )2 + �2
IR, (10)

where �IR is the broadening due to the instrumental resolution function and �qcorr
z is the
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Figure 6. A comparison of the scattered intensity observed when the wavevector transfer was
varied longitudinally through the 2 2 0 reflection for two different x-ray configurations. The data
collected using the three crystal configuration has been rescaled to the data from the two crystal
measurements.

resolution corrected width. The coherence length is then calculated using

ξ = 2π

�qcorr
z

. (11)

For this analysis to be valid, the corrected longitudinal FWHM of the main Bragg peak must
be independent of the order of reflection measured. Most studies usually just measure one
reflection and its associated satellites, so this criterion cannot be verified. In this study we
have measured three reflections; the scattered intensity observed when the wavevector transfer
was scanned through the Bragg reflections longitudinally by varying the qz component of the
scattering vector for selected samples is shown in figure 7. Analysis of these results shows that
the width of main Bragg peak is dependent on the order of reflection and so strictly speaking
a unique value for the coherence length cannot be found using equation (11). Typical values
for the resolution corrected FWHM of the main Bragg peak for these reflections for sample
932 are �qz(2 2 0) = 0.002 68(0.000 04) Å−1, �qz(4 4 0) = 0.004 91(0.000 06) Å−1 and
�qz(2 6 2̄) = 0.011 86(0.00002) Å−1. However, for comparison with other studies, we have
included the results of calculating the coherence length from the 2 2 0 reflection, table 1, along
with the rocking curve FWHM. The reasons for the dependence of the longitudinal width as a
function of qz are discussed in the following sections.

Before any detailed analysis of the lineshape shown in figure 7 is made, a few general
conclusions can be drawn from the observed profile. Firstly, these profiles display a main
Bragg peak that is highest in intensity. This peak arises due to the scattering from planes that
have an average spacing d̄ . Secondly, all of the samples examined showed a large number
of subsidiary peaks or superlattice peaks. The presence of these peaks gives a qualitative
indication that these samples exhibit a high degree of modulation. The superlattice peaks are
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Figure 7. The observed scattered intensity as the wavevector transfer was varied longitudinally for
various reflections. The superlattice samples are of structure [t1 Å DyFe2/t2 Å YFe2]N . Sample
SL989 [70/30]60 is shown in (a)–(c) and SL1003 [150/100]50 in (d)–(f). The solid curve is a fit to
the data based on the models described in the text.
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Table 2. The resolution corrected FWHM of the 2 2 0 Bragg reflection and associated satellites
of the longitudinal scans for sample SL932 [100/100]40.

Satellite index, m −1 0 1 2 3

FWHM (Å−1) 0.0029 0.002 68 0.0025 0.0025 0.0032
Error (Å−1) 0.0015 0.000 04 0.0002 0.0037 0.0049

asymmetrical about the main Bragg peak, which is evidence for a varying concentration and
strain profile in the superlattice. Also the width of the main Bragg peak and superlattice peaks
remains largely constant, table 2, which shows that the deviations from the average bilayer
repeat distance, �̄, are small. The mean bilayer repeat distance, �̄, can be obtained from the
spacing of the satellite peaks.

Superlattice satellites were also observed around the 1 7 3̄ and 2 6 2̄ reflections. The results
for the 2 6 2̄ reflection are shown in figures 7(c) and (f) and this reflection has an in-plane
component, qx , to the wavevector transfer. The presence of satellites around this reflection
shows that the superlattices exhibit a high degree of in-plane coherence and that the regular
stacking sequence of the planes is preserved.

5.2.2. Fitting x-ray scattering data from superlattices. The cubic Laves phases grow in an
FCC lattice, with a six atom rare earth–transition metal basis. A calculation of the structure
factor reveals that some reflections are more sensitive to the rare earth atoms, while others
are more sensitive to the transition metal atoms. In particular, for a pure film of DyFe2 the
2 2 0 reflection depends only on the scattering from the dysprosium atoms, while the 4 4 0
reflection is sensitive to a mixture of the scattering from the dysprosium and iron atoms, while
the 2 6 2̄ reflection depends only on the scattering from the iron atoms. This means that these
experimental lineshapes contain different information and so therefore all these peaks should
be simultaneously fitted to a common model.

Non-linear fitting of superlattice data with a conventional Levenberg–Marquardt fitting
routine can often result in difficulty. The results can depend upon the initial values of the
parameter vector, p, because this algorithm is guided by the form of the error function in the
parameter space and has a tendency to become trapped in local minima. This can often result
in numerous abortive fitting attempts. This is usually not a problem when the parameter space
is relatively small and when the fitting function can be quickly evaluated. The model described
here is relatively slow to evaluate since it performs a sum over numerous bilayer repeats and
performs the calculation simultaneously for several Bragg reflections. In addition the number
of parameters, m, required for this model was typically 115, of which about 30 were variable.
The complexity of the model means that the m dimensional error function space that had to be
searched was very large. Finally, the complication of simultaneously fitting several reflections
means that a conventional Levenberg–Marquardt algorithm would not be an effective way of
finding the global minimum of the error function. Hence we used an alternative fitting routine,
a DEA, and found that it was more reliable in locating a global minimum.

The DEA has the advantage that convergence to a global minimum of the error function is
virtually guaranteed, provided that a suitable error function for the data is selected. The error
function that we used was of the form

E =
n∑

j=1

[log Imod j − log Iexpt j
]2, (12)

because it was found to cope well with the lineshapes that spanned several orders of magnitude.
The DEA algorithm is described in detail by Wormington et al [21] and is outlined below.
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Firstly, an initial guess is made for a parameter vector p0 = [p1, p2, . . . , pn] that contains
the n fitting variables. Then a set of parameter vectors P = [p0,p1, . . . ,pm−1] is created.
This has a population m and the vectors p1, . . . ,pm−1 are created by randomly selecting the
value of each parameter p1, . . . , pn that make up p1 etc from within upper and lower limits.
The intensity, I (qz; p), is then calculated for each population member and the error function
calculated by comparing the model to the data using equation (12). The best fit member of the
population is assigned to b. A better solution is obtained by selecting two random members
of the population P , pa and pb. Then their difference is computed and the best vector b is
mutated according to

b′ = b + km(pa − pb), (13)

where km is a mutation constant, that was set to 0.7 in our calculations. Finally a new trial
vector t is created by starting with the randomly chosen j th parameter and either choosing it
from the b′ vectors or as p0. This is decided by taking a random number from a uniform (0, 1)

distribution. If the random number is less than kr , then the j th parameter is chosen from the b′
vectors, whereas if it is greater than kr , then the parameter is chosen as p0. kr was set to 0.5.
The error function is then computed and this trial vector is compared to a randomly chosen
member of the population. If the fit is better, then this member is replaced by the trial vector
and the whole process is repeated. All of the calculations and fitting routine were performed
using a FORTRAN code and this method provided a fast way of computing the large sums
required to calculate the simulated profile.

The fitting procedure was terminated when there was convergence of all the population
members, with the result that the trial vector t produced a lineshape that was indistinguishable
from the best fit vector. The errors were estimated by performing a grid search around the
minimum found by the DEA. The errors in each parameter were then estimated at a 5% level
of the error function.

The parameters allowed to vary during the fitting procedure were the mean lattice
parameters of the DyFe2 and YFe2 blocks, d1 and d2, the corresponding numbers of layers of
these blocks, n1 and n2, and the concentration (λ1) and strain (λ2) profiles of the superlattice.
The other variable parameters were the gradient and intercepts of the background at each
reflection and also the four parameters required to define the Pearson VII functions that
were convolved with the raw simulations. This function was required to take account of
the instrumental resolution and any imperfections of the superlattice not included in the model
that give rise to broadenings of the reflections.

5.2.3. Fitting results. There is excellent agreement between the results of the fitting and
experimental results as shown for samples SL989 and SL1003 in figure 7. The results of
fitting the longitudinal scans to the model described in section 4.1 are presented in table 3 and
these give good agreement with the nominal thicknesses. The measured structure has been
deduced from the number of layers and average spacing of the DyFe2 and YFe2 blocks.

Table 3 also shows the fitted values of the concentration profile, λ1, and strain profile,
λ2. The interface widths deduced from the fitting are relatively large. In order to clearly
demonstrate the form of this profile, the strain profile for sample SL989 is shown in figure 8.
For this particular sample, the fitted value of the strain profile was λ2 = 10 layers. This shows
that the interfaces have a width of the order of 13 Å. The concentration profile is slightly
sharper for this sample, of the order of 9 Å. The HREM image presented in figure 5 shows
that, over a particular ∼(300 × 300) Å area of sample, the interface width is consistent with
that deduced from the x-ray diffraction.
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Figure 8. (a) The concentration profile, and (b) strain profile deduced from the fitted data for
sample SL989 [70/30]60. The vertical line marks the position of an abrupt interface for a sample
with λ = 0.

Table 3. The structural parameters of the DyFe2/YFe2 superlattices as determined by x-ray
diffraction at room temperature. The parameters given in the table were obtained from simultaneous
fits of the three measured diffraction profiles by the scattering model described in section 4.1. The
errors are estimated piecewise at a 5% level of the error function.

Structure
λ1 λ2

Sample Nominal Measured (Å) (Å)

932 [100/100]40 [95.26/97.32]40 31(1) 2(5)
933a [150/150]40 [145.25/137.40]40 20(6) 21(3)
955a [250/150]30 [265.04/153.05]30 39(10) 18(10)
989 [70/30]60 [73.37/24.41]60 9(1) 13(2)
990 [50/70]60 [55.26/67.39]60 14(2) 12(2)

1003 [150/100]50 [151.86/88.35]50 19(6) 19(2)

a Determined from 2 2 0 and 4 4 0 reflections only.

5.2.4. Strain analysis. The positions of the measured reflections permitted the in-plane
and out-of-plane lattice constants to be measured. The [1 1 0]–[1 1̄ 1] scattering plane, which
contains a high density of suitably inclined reflections, was used to determine the in-plane
lattice constant along [1 1̄ 1]. In order to check for in-plane anisotropy, for sample SL1003
a measurement of the 5 5 3̄ reflection enabled the a001 lattice parameter to be determined.
Table 4 lists the lattice parameters measured both out-of-plane (for each superlattice component
and the average) and in-plane. These values should be compared with the bulk parameters
equal to 7.325 Å for DyFe2 and 7.363 Å for YFe2. A single value found in each case for
the in-plane parameter means that the DyFe2 and YFe2 component layers are strained to be
pseudomorphic. However, a large tensile strain has been imposed on the whole superlattice
stack. These results are consistent with previous reports of strains in epitaxial RFe2 single
films and bilayers [22–24]. The dominant tensile strain is introduced during cooling of the
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Table 4. The average lattice parameters for the DyFe2 blocks (a1) and YFe2 blocks (a2) deduced
from the simultaneous fits of three Bragg reflections to the model described in the text. d̄ is the
weighted average lattice parameter defined as ā = √

2(n1d1 + n2d2)/(n1 + n2). Sample 1002 is a
10 000 Å layer of DyFe2.

Sample a1 (Å) a2 (Å) ā (Å) a11̄1 (Å) a001 (Å)

932 7.282(0.001) 7.340(0.001) 7.311(0.001) 7.389(0.001) —
933 7.271(0.002) 7.340(0.002) 7.305(0.002) — —
955 7.278(0.001) 7.337(0.001) 7.300(0.001) — —
989 7.281(0.002) 7.356(0.005) 7.300(0.005) 7.392(0.001) —
990 7.270(0.001) 7.332(0.001) 7.305(0.001) 7.394(0.001) —

1003 7.280(0.001) 7.349(0.001) 7.305(0.001) 7.394(0.001) 7.388(0.001)
1002 — — 7.310(0.001) 7.355(0.001) 7.376(0.001)

Table 5. Thermal expansion coefficients of sapphire [25].

Compound Axis T0 A (10−6 K−1) B (10−9 K−1)

Al2O3 c 273 6.582 4.995
Al2O3 a 273 5.425 5.534

sample from the growth temperature to ambient and is a result of substrate clamping by the
sapphire, which has a thermal expansion coefficient considerably lower than that of RFe2.
Our results on superlattice sample 1003 differ from those of Mougin et al [22] in that the
strain is not exactly isotropic in the plane. In fact, in-plane anisotropy would be expected
with the substrate-clamping model because sapphire has R3̄c symmetry and is therefore not
isotropic within the (1 1 0) plane. The thermal expansion coefficients, α, of Al2O3 parallel
and perpendicular to the c-axis differ by some 10%, as shown in table 5 and are calculated
using α = A + B(T − T0). This difference has been ignored in previous models [22]. In
order to investigate the question of anisotropic strain using a simpler RFe2 structure and to
compare directly with previous studies, the lattice constants of a single layer of DyFe2 of
10 000 Å thickness were measured, sample 1002 (table 4). The anisotropy in this sample is
found to be much more significant and is of different sign to the small anisotropy measured
in SL1003. In fact the sign of the anisotropy measured in the single DyFe2 film is consistent
with the proposed model of lattice clamping by the anisotropic sapphire substrate (see table 5),
although the magnitude of the measured anisotropy is larger than would be predicted if the
DyFe2 was assumed to be relaxed at the growth temperature. The origin of the small anisotropy
of opposite sign in the superlattice sample, SL1003, is not clear. Quantitative analysis of these
systems is made more difficult by the scarcity of data on thermal expansion coefficients of
RFe2 compounds. Values of 12 × 10−6 K−1 (300 K) and 16 × 10−6 K−1 (820 K) are quoted
by previous authors [22, 24] as general values for RFe2 compounds, but it is likely that these
values will depend on the rare earth element and there could also be magnetoelastic effects
and possible anisotropy in some of the RFe2 compounds.

5.2.5. Transverse profile. Typical scans when the wavevector transfer was varied
perpendicular to the sample surface by varying the qx component are shown in figure 9.

The presence of a single component lineshape in these scans shows that there is a common
in-plane lattice parameter for both the YFe2 and DyFe2 blocks. This result is to be expected
since the mismatch of bulk DyFe2 relative to YFe2 is given by �a/a = −0.516% [26], so the
critical thickness for the introduction of dislocations to relax the strain is expected to be larger
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Figure 9. The scattered intensity observed when the wavevector transfer was varied transversely
through the main peak and superlattice peaks for the 2 2 0 reflection for sample SL1003 [150/100]50 .
(a) Satellite −1 and (inset) a rocking curve for the 2 2 0 reflection, (b) the main Bragg peak,
(c) satellite +1, (d) satellite +3.
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Figure 10. Results of fitting the transverse scans to a common shape for sample SL1003
[150/100]50 .

than the layer thickness of the sample. Much higher strains are needed before relaxation of
each block takes place, as has been shown to occur in holmium–scandium superlattices [27],
where the in-plane mismatch �a/a = −7.51%, which results in partial relaxation of the strain
between the layers.

These scans and other similar scans for the 4 4 0 and 2 6 2̄ reflections were simultaneously
fitted to a single Pearson VII function with a linear background. This was achieved using
the DEA described in section 5.2.2. All of the scans were fitted with a common shape since
the shape of the peak is characteristic of the DyFe2–YFe2 interface and the mosaic spread.
The common peak shape determined from the fit for this sample was 3.3. The widths were
then determined as a function of satellite index and the results are shown in figure 10. They
show that the width of the peaks is dominated by the mosaic width that varies linearly as a
function of qz . This suggests that there is a high density of dislocations in the superlattice
giving rise to domains with different tilts. A secondary effect is the increase of the widths
with the satellite index. It has been shown that the contribution of the interface roughness
to the widths of the first and subsequent satellites of a superlattice with interfacial roughness
is given by �n/�1 = n2/α [20] where n is the satellite index, � is the width of the scan
and α is the roughness exponent. Therefore our results suggest that there is some correlated
roughness present at the interfaces of these Laves phase superlattices. A similar analysis of the
transverse scans of the other superlattice samples was also performed and these results were
qualitatively similar to those discussed previously, showing that the roughness was common
to all the superlattice samples in this study.

5.2.6. Area plots. The scattering around the 2 2 0 reflection was measured for sample SL1003
in order to investigate further the interfacial structure of the sample. These results are displayed
in figure 11. The intensity has been plotted on a log scale. This shows a main Bragg peak that
is highest in intensity and a number of subsidiary peaks either side of the main peak. This area
plot shows that the peaks are rather streak like in the in-plane direction. The streaks show that
there is some correlated roughness present in these superlattice samples.
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Figure 11. A detailed contour plot around the 2 2 0 reflection for superlattice sample SL1003
[150/100]50 . The contours are on a logarithmic scale and the units of qx and qz are Å−1.

6. Conclusions and discussion

We have presented the results of a study on the structural properties of a series of high
quality Laves phase superlattice samples grown by MBE. We have used a DEA algorithm
to simultaneously fit three longitudinal scattering profiles for each sample to a common model
and to show that the agreement between the model and experiment is excellent, over three
orders of magnitude and for all the reflections. The superlattice satellites have a longitudinal
width that remains largely constant for the main peak and superlattice peaks, which shows that
the fluctuations around the mean bilayer length �̄ are small [18]. This allows us to extract an
estimate for the interface width for these superlattices. Typically this is of the order of 10 Å.
The value deduced for the interface width in this way is consistent with an estimate of the
interface width made from HREM measurements.

The longitudinal profile showed a dependence of the FWHM of the main Bragg peak
as a function of qz . This result shows that there is a non-uniform strain profile throughout
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the whole superlattice structure. The models presented encompassed this by convolving the
simulated lineshape with a Pearson VII function, the width and shape being determined from
the experimental data. Future models should be able to take this effect into account by including
a varying strain profile throughout the superlattice in addition to the bilayer concentration and
strain profiles. This effect of the strain profile varying throughout the whole superlattice is
probably a consequence of the dislocations introduced in the initial stages of the growth of the
samples and also because the first few bilayer repeats were grown at 600 ◦C and the temperature
reduced gradually to 450 ◦C over the course of the next few bilayer repeats. This may give rise
to a varying strain profile throughout the superlattice. The width of the 2 6 2̄ reflection was
found to be considerably larger in the longitudinal direction than that of the 4 4 0 reflection.
These reflections both have the same qz component to the wavevector transfer, so a varying
strain profile throughout the whole superlattice cannot explain this. Measurements of the
resolution function show that this effect cannot be explained as because of a rotation of the
resolution ellipsoid. Therefore it is more likely that these samples exhibit some disorder in the
stacking sequence of the planes in the [1 1 0] direction.

We have also measured the in-plane lattice parameters and shown that the strains are
almost uniform in the epitaxial plane. The lattice parameter in the growth direction is about
7.30 Å which is considerably smaller that the bulk values for DyFe2 and YFe2. This is a
direct result of the epitaxial strains expanding the in-plane lattice constants relative to the bulk
compounds.

Comparison of the lattice constants of a 10 000 Å thick layer of DyFe2 grown in a similar
manner to the Laves phase superlattices shows that this sample exhibits a non-uniform in-plane
strain. This result can be qualitatively explained by the different thermal expansion coefficients
of sapphire and DyFe2 and the anisotropy of sapphire in (1 1 2̄ 0).

For the superlattices, transverse scans performed through the main peak and subsidiary
satellite peaks shows that the peak width is dominated by a mosaic crystal effect that arises due
to the high density of dislocations that partially relax the strain in the superlattice. The mosaic
spreads are typically 0.9◦, while the superlattice coherence length, ξ , is typically 2000 Å.

These results show that, despite the complex growth process, these Laves phase
superlattices are of high quality. This study also demonstrates that for complex superlattice
structures, several Bragg reflections should be measured and simultaneously fitted to a model if
an accurate description of the structure is required. The large parameter space being searched
shows the need for a fitting routine that is capable of avoiding being trapped in local minima
and the DEA algorithm is shown to be an extremely effective way of performing a non-linear
least squares fit using a Rietveld refinement.
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